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For the solution of problems in the ignition of reacting substances great
mathematical difficulties have to be surmounted. An analytic solution
is known for only one problem of this type [1]. In the present work with
the example of a solution of two different problems in ignition theory,
of independent interest, it was shown that all the mathematical diffi-
culties can be overcome by the method of Shvets [2].

81, We shall consider ignition of a semiinfinite re-
acting region by a heated medium with other thermal
constants under ideal contact conditions. We assume
here and below that a zero-order reaction occurs and
that all the thermal coefficients are constant., From a
solution of this problem, in the special case when n —
— o, we obtain a solution for the problem examined in
[1, 3, 4]. Mathematically the problem reduces to the
solution of the following system of equations:
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with the following boundary and initial conditions:
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Here 0 is dimensionless temperature, x is a dimen-
sionless coordinate, 7 is dimensionless time, T, is the
initial temperature of the heated nonreacting medium,
T° is the initial temperature of the reacting substance,
R is the universal gas constant, q is the heat effect of
the reaction, r is a dimensionless coordinate, kg is a
pre-exponential, E is the activation energy, A is the
thermal conductivity coefficient, p is the density, c is
the heat capacity, t is the time, % is the thermal dif-
fusivity coefficient, and the indices 1 and 2 refer to
the reacting substance and the heated medium respec-
tively.

In the derivation of Eq., (1.1) the Frank-Kamenetskii
transformation [5] for exp(—~E/RT) was used. Accord-
ing to [4], Eq. (1.1) satisfactorily describes the igni-
tion of condensed reagents for a first-order reaction if
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To solve the boundary value problem (1.1)-(1.3)
we use the method of Shvets [2, 6], which as well
as simplicity possesses good convergence. Since in
practice a change in temperature occurs in the vicinity
of the medium separation boundary, it is appropriate to
introduce the thickness of the thermal boundary layer

Ajy(1) and Ay(71). The boundary layers are then at £,
and the conditions at T = 0 take the following form:

0, (A, 7)) = — 0,

B (—Ay 1) =0, A (0) = 5,0 =0 (1.4

As first approximations we shall take the following:

Y = a4+ b, OF = at + b, (1.5

We determine the values ay, ay, b;, by from the
boundary conditions (1.3) and (1.4):
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By substituting Eq. (1.5) in the right hand side of
Egs. (1.1) and (1.2) and integrating twice, we obtain:
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As before, we obtain the values of Cy, C4, Dy, Dy
from the initial and boundary conditions (1.3) and
(1.4):
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From the Shvets conditions,
80 | 30.
o= — - O -
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we obtain two ordinary nonlinear differential equations
for Ay and Ag:
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If the nonreacting medium possesses a very high
heat capacity the temperature at the medium boundary
remains constant, and n — =, In this case instead of
the systems (1.11) and (1.12) we have only one equa-
tion, which is integrated in closed form:
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In the general case system (1.11) and (1.12) is
solved by expansion into the series:

Ay =ath + Byt + 67 4. L,

Ay = 0y - Byt 8y . . .. (1.14)

By substituting Eq, (1.14) in Egs. (1.11) and (1,12)
and equating terms with the same power in 7 to zero,
for the determination of o, and o, we obtain a set of
two nonlinear algebraic equations, and for the deter-
mination of 8; and 85, 6; and 6, we obtain a set of lin-
ear equations. Solution of these equations gives o =

= ay=V6, By =B;= 0 and, finally,
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When n — « and the values found for «;, 8y, and 6,
are taken into account, the value of A, coincides accu~
rately with Eq. (1.13) up to terms containing i >
> 3/2), The first terms in Eq. (1.14) characterize the
growth of the boundary layer for the nonreacting me-
dium, It follows from Egs. (1.13), (1.15), and (1.16),
that the heat of reaction at 8, > 1 has little effect on
the thickness of the boundary layer for average values
of 7. If in Egs. (1.7), (1.8), and (1.14) we put the terms
which are dependent on heat of reaction equal to zero
and equate 6((0, T) and 86,/0x at x = 0 to the known ac-
curate values [7], we obtain 8,(0, 7) = -8,/(L + n) for
both the accurate and the approximate solutions, and
the temperature gradient of the approximate solution
at x = 0 in absolute value exceeds the true value by
1.08 [7]. The warming up time for the reacting system
is found from the Zel'dovich condition 98,/ dz =0 at

= 0 [8]. For T = Tx we have the following equation,
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Substitution of the A;(7) and Ay(7) values in Eq,.
(1.17) and solution of the equation obtained with respect
to T give the warming-up time. An approximate solu-
tion of Eq. (1.17) is provided by the following expres-
sion,
T ° n%0,°

AT
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which is obtained from Eq. (1.17), if 6, and 6, are ne-
glected in comparison with ¢y and o, It is easily seen
from Eq. (1.18) that +,° — 4/,0,2, whenn =~ «, and 1% —
— 0 whenn— 0, i.e,, T% is a nonmonotonic function of
n which reaches a maximum at nyx when n = nx. The
greater the value of 8y, the sharper and higher is the
7% maximum and the closer is n« to zero. When 6, > 1

we have ny = 1/(8y — 2). Within the 8 — «, n, = 0
limits, 73, — . The nonmonotonicity of 73, as a function of
n is evidently explained by a specific feature of the
Arrheniug function, in that the heat separated from the
reaction is not converted to zero even at sufficiently
low temperatures. This deficiency of the Arrhenius
function was noticed in [9], and the method of intersec-
tion was used for its elimination. We eliminate it by
the method of Spalding [10] and Rosen [11], by assum-

ing that

(A =const, k= const),

exp——~~A<T r )
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In a similar way we find, for the heat liberated, i
the form of Eq. (1.19),
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In this case as n increases the warming-up time
decreases monotonically from « at n =0 to 7 =
=(1/2) (k + 1) at n —eo.

For the limiting case n — < it is possible to find, within the frame-
work of the Shvets method [2], an accurate value for the warming-up
time:
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Comparison of Eq. (1.21) with the expression for r, as n— o, ob~
tained from Eq. (1.17) by considering §,, showed that they are practi-
cally identical. By comparing Eq. (1.21) with the expression for 7,
which was found [4] from Eq. (1.21) with an electronic computer, we
see that its accuracy is completely satisfactory. Thus, for 6;= 5, 10,
15, 20, 25, 30 from Eq. (1.21) we have 7, = 7,3, 27, 59, 104, 161,
231.

To evaluate the accuracy of Eq. (1.18) at average values of n we
find 7, for n= 1 from Eq. (1.17) by the method of tnal and linear in-
terpolation. In this way it was found that

T, = 28.8, 8{P(0,7,) = —1.7, A,(r,,) = 15.8, Ay(1,) = 11.9 (8, = 5)
T, = 957, 82(0,7,) = —2.6, Ay(1,) = 75.8, Ay(1,) = 68.9 (B,=10)
T = 247 60 (B, = 20),

while from Eq, (1.18) we have respectively 7, = 20,7, 934, 25 e,
The accuracy of formula (1.18) is therefore completely satisfactory
within the framework of our approximations. Knowing the value of
T, we can easily find with Eq. (1.14) the thickness of the heated
layers

nby 6 e
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and Ay(r.) while we find 640, 7.) = by from Eq. (1.10). Whenn ~0
instead of Eq. (1.22) we must use a formula which can be obtained in
a similar way by considering that the heat evolved from the reaction
is determined by Eq. (1.19), and the warming-up time by Eq. (1.20).
As seen from the calculations given the value 612 (0, 7) increases with
increase in r, and the moment r = 7, corresponds to a temperature
close to zero,

82, Ignition of reagents was first studied by

Zel'dovich [12], who took account of the phase trans-
formations, In [12] he gives an outline of the ignition
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process and an approximate calculation method. The
ideas in [12] are consolidated and further developed in
[13]. Here ignition of an explosive material by a heated
plate is considered and account is taken of the heat
evolved from the reaction., A solid explosive at initial
temperature T° was first brought into contact with the
heated plate, the temperature of which was T) > Ty >
> T°, where T, is the phase transformation tempera-
ture. Following [12] we suppose that the heat of reac-
tion is liberated in the liquid phase, and that the de-
composition reaction is endothermic, We also assume

that the solid and liquid phases have the same densities,

Mathematically the problem reduces to the solution of
Egs. (1.1} and (1.2) for x < x4 and X > x4 respectively
with the following boundary and initial conditions:
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o dry
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Here x4 is a dimensionless coordinate of the trans-
formation front, p is the dimensionless heat of the
phase transformation, L is the heat of the phase trans-
formation, and the indices 1 and 2 refer to the liquid
and solid phases respectively.

As before we introduce the thickness of the boundary
layer, A(7). The last of the boundary conditions (2.1)
and the initial conditions then take the form

0, (A, O =—8, AW =0 z,(0=0 2.2
For the initial approximations we take the following
linear functions:

oy — _ 8 0m

, @000z A0,

Ty — A 2y — A (2'3)

These functions satisfy all the boundaxy conditions
apart from the second of the conditions (2.1). Substi-
tuting 69 and 64 in the right hand side of Egs. (1.1)
and (1.2) and integrating the results with respect to x,
we obtain the second approximations:

8 — 6,(,;2*:6 g*iexp_ 8z L gz - Ry, (2.4)
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We determine the values of g;, g4, hy,
the boundary conditions (2,1) and (2.3):

and h,y, from
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For the determination of A and xx we use the bound-
ary condition (2.2) and the Shvets condition 8, / 9z =
at x = A, The result for A and x, is a set of two ordi-
nary first-order differential equations:

a(z, — A (v, +2A) +6=0 2.9)
2 g (B0 —0,) (A" - 2,) = 0, +
- Q:BL:Z (t—r—mnb) — =2 (p + 5 5 (2.10)

We solve Egs. (2.9) and (2.10) with the initial condi-
tions (2.2) by expansion into a series, assuming that

A = vt vt vt L L

Ty = PgTh 4 PoT + pa? 4. (2.11)

Substituting Eq. (2.11) in Egs, (2.9) and (2,10) we
obtain for the determination of v; and u, a set of two
second-order algebraic equations and for the determi-
nation of vy, uo, V3, M3, ... a set of linear equations.
As a result we find

g 12 2
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The first terms in Eq, (2.11) give a solution of the
Stefan problem on the melting of nonreacting media.
We have a nonreacting medium when E — «, 85— «,
0y — =, Normally E > 1, 0;> 1, 04 > 1, Since v; and
s ~ 0% they are small in comparison with v; and yj,
and consequently the heat liberated from the reaction
does not play a substantial role in the values of A and
Xy With moderate values for . An exact solution of the
Stefan problem on melting for a nonreacting medium is
given in [7]. For o = 0.4848, 8= 2.5, p=20.125, 0y =
= 12,25, 64 = 9.22 we obtain from [7] xx = 0.74 V7, and

according to the approximate formulas (2.11), (2.12),
and (2,13) we have x,, =~ 0,72 V1, In this way,
86, _13.08 | 1392 (9 14

02 Jx=0 Vi Bz |x=0 Ve
Consequently the accuracy of the approximate for-
mulas is completely satisfactory. We notice that the
thermal coefficients correspond to a hypothetical ex~
plosive with the characteristics of nitroglycol {13],
but the densities of both phases were taken to be the
gsame, By fulfilling the Zel'dovich [8] condition with
Eq. (2.4), we obtain an equation for the determination
of the warming-up time, which is accurate up to terms
containing i(i > 3/2):
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By neglecting terms containing p3; and p#, we obtain
an approximate solution to Eq. (2.15),

ro o (124 mY8p

R I B (2.16)

which can be refined if desired by resorting to the
method of the small parameter and taking g as small.
When p — 0, @ — «, 8 — 0 we obtain the principal
term of Eq. (1.21) from Eq. (2.16). Here x, plays the
role of A, 0, plays the role of 8, and the second of
the conditions (2.1) is converted into the Shvets condi-
tion [2]. With a knowledge of the warming-up time it is
possible to calculate any other ignition characteristics.
In particular, the amount of heat transferred from the
heated plate during the warming-up time, accurate up
to terms containing pg, is

2 12) 0,2 T (12 1) 0,7 -

0 = P [yl (2.17)

Comparison of Eqs. (2,16) and (1.21) showed that the phase trans-
formation considerably increases the warming-up time. For the hypo~
thetical explosive introduced above, in particular, 7, is equal to
180,2according to Eq. (2.16)and 7, = 21,2according to Eq. (1.21), ifone
supposes in Eq. (1.21) that 8,= 6, = 9.22 or 7y, = 37.5 if §; = 12.25,
The solution of the problem of explosive ignition by the method of
Shvets [2] does not present any particular difficulty if the densities of
the phases are very different, but in view of the fact that in this case
there is mechanical motion of the liquid phase the calculations become
more cumbersome,

The author thanks A. I. Govyadinov for discussion
of the work.
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